Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Neurotrauma ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38661533

ABSTRACT

Spinal cord injury (SCI) negatively impacts individuals' functional independence, and motor and sensory function. Intense walking training has been shown to facilitate recovery for individuals with chronic SCI. Powered robotic exoskeletons provide therapists with a tool that allows them to conduct walking training with less therapist effort as compared to conventional walking training. Exoskeletal-assisted walking (EAW) has been studied in the chronic SCI population with preliminary reports showing benefits in mobility, health, and quality-of-life outcomes. However, few reports have studied EAW's benefits in the acute (<90 days post) SCI population at a time when neural plasticity is most dynamic and modifiable. The purpose of the study was to conduct a pilot randomized controlled trial (RCT) to understand the effects of incorporated EAW in acute inpatient rehabilitation (AIR) for individuals with SCI on functional, motor, and sensory recovery. The study outcomes included the Spinal Cord Independence Measure (SCIM) III and International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor and sensory scores that were assessed by unblinded assessors. We also recorded EAW session data, including adverse events, walking and up time, step counts, Borg Rating of Perceived Exertion (RPE), and compliance with scheduled EAW training. From August 2019 to July 2022, 16 participants completed the AIR with incorporated EAW, and 12 completed the standard AIR, all with SCI and preserved leg function within 90 days post-injury. During each session, the AIR with incorporated EAW group averaged 34.3 (±9.4) min of up time, 25.4 (±7.7) min of walk time, and 536 (±157) steps. Analysis via two-by-two mixed-effects models showed significant increases in the SCIM total score and ISNCSCI total motor and sensory scores over time for the AIR with incorporated EAW group [SCIM total score: F(1, 26) = 5.59, p = 0.03; total motor score: F(1, 26) = 8.06, p < 0.01; total sensory score: F(1, 19.2) = 5.08, p = 0.04], outperforming the standard AIR group. The AIR with incorporated EAW group showed 13, 14, and 22 points higher changes in the SCIM total score, total motor score, and total sensory score (respectively) by discharge compared with the standard AIR group. Incorporating EAW into AIR may facilitate functional, motor, and sensory recovery for individuals with SCI during AIR better than standard AIR. However, the study had a limited sample size. Further studies are needed to clarify the effects of EAW in AIR.

2.
Front Rehabil Sci ; 5: 1267608, 2024.
Article in English | MEDLINE | ID: mdl-38510946

ABSTRACT

Objective: To explore independence, usability, and self-reported quality of life (QOL) in eligible persons with spinal cord injury (SCI) who used a standing powered wheelchair over a 12-week period. Setting: VA SCI research facility. Participants: Four participants with chronic SCI who use a wheelchair as the primary means of mobility. Intervention: A standing power wheelchair was used three times a week (3.5 h/session) for 12 weeks in a supervised setting. Main Outcome Measures: safety, usability and feasibility, blood pressure in seated and standing positions, bowel, bladder, and pain item banks from the SCI-QOL Physical-Medical-Health domain, and overall user satisfaction with the device. Results: Participants consistently maintained normal blood pressure responses between seated and standing positions throughout the training sessions and learned to perform all the mobility tasks safely and independently. Participants reported improvements on the SCI-QOL and were generally satisfied with the upright standing power wheelchair. Conclusions: In this small case series of chronic, non-ambulatory individuals with SCI, the standing powered wheelchair was shown to be safe and efficacious.

3.
Neurogastroenterol Motil ; 35(11): e14667, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37743783

ABSTRACT

BACKGROUND: Effect of biofeedback on improving anorectal manometric parameters in incomplete spinal cord injury is unknown. A short-term biofeedback program investigated any effect on anorectal manometric parameters without correlation to bowel symptoms. METHODS: This prospective uncontrolled interventional study comprised three study subject groups, Group 1: sensory/motor-complete American Spinal Injury Association Impairment Scale (AIS) A SCI (n = 13); Group 2 (biofeedback group): sensory incomplete AIS B SCI (n = 17) (n = 3), and motor-incomplete AIS C SCI (n = 8), and AIS D SCI (n = 6); and Group 3: able-bodied (AB) controls (n = 12). High-resolution anorectal manometry (HR-ARM) was applied to establish baseline characteristics in all subjects for anorectal pressure, volume, length of pressure zones, and duration of sphincter squeeze pressure. SCI participants with motor-incomplete SCI were enrolled in pelvic floor/anal sphincter bowel biofeedback training (2 × 6-week training periods comprised of two training sessions per week for 30-45 min per session). HR-ARM was also performed after each of the 6-week periods of biofeedback training. RESULTS: Compared to motor-complete or motor-incomplete SCI participants, AB subjects had higher mean intra-rectal pressure, maximal sphincteric pressure, residual anal pressure, recto-anal pressure gradient, and duration of squeeze (p < 0.05 for each of the endpoints). No significant difference was evident at baseline between the motor-complete and motor-incomplete SCI groups. In motor-incomplete SCI subjects, the pelvic floor/anal sphincter biofeedback protocol failed to improve HR-ARM parameters. CONCLUSION: Biofeedback training program did not improve anal manometric parameters in subjects with motor-incomplete or sensory-incomplete SCI. Biofeedback did not change physiology, and its effects on symptoms are unknown. INFERENCES: Utility of biofeedback is limited in patients with incomplete spinal cord injury in terms of improving HR-ARM parameters.


Subject(s)
Fecal Incontinence , Spinal Cord Injuries , Humans , Anal Canal , Prospective Studies , Pelvic Floor , Rectum , Biofeedback, Psychology/methods , Manometry , Fecal Incontinence/etiology , Fecal Incontinence/therapy
4.
J Spinal Cord Med ; : 1-13, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695205

ABSTRACT

CONTEXT/OBJECTIVE: To identify cardiometabolic (CM) measurements that cluster to confer increased cardiovascular disease (CVD) risk using principal component analysis (PCA) in a cohort of chronic spinal cord injury (SCI) and healthy non-SCI individuals. APPROACH: A cross-sectional study was performed in ninety-eight non-ambulatory men with chronic SCI and fifty-one healthy non-SCI individuals (ambulatory comparison group). Fasting blood samples were obtained for the following CM biomarkers: lipid, lipoprotein particle, fasting glucose and insulin concentrations, leptin, adiponectin, and markers of inflammation. Total and central adiposity [total body fat (TBF) percent and visceral adipose tissue (VAT) percent, respectively] were obtained by dual x-ray absorptiometry (DXA). A PCA was used to identify the CM outcome measurements that cluster to confer CVD risk in SCI and non-SCI cohorts. RESULTS: Using PCA, six factor-components (FC) were extracted, explaining 77% and 82% of the total variance in the SCI and non-SCI cohorts, respectively. In both groups, FC-1 was primarily composed of lipoprotein particle concentration variables. TBF and VAT were included in FC-2 in the SCI group, but not the non-SCI group. In the SCI cohort, logistic regression analysis results revealed that for every unit increase in the FC-1 standardized score generated from the statistical software during the PCA, there is a 216% increased risk of MetS (P = 0.001), a 209% increased risk of a 10-yr. FRS ≥ 10% (P = 0.001), and a 92% increase in the risk of HOMA2-IR ≥ 2.05 (P = 0.01). CONCLUSION: Application of PCA identified 6-FC models for the SCI and non-SCI groups. The clustering of variables into the respective models varied considerably between the cohorts, indicating that CM outcomes may play a differential role on their conferring CVD-risk in individuals with chronic SCI.

5.
J Spinal Cord Med ; : 1-10, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37769141

ABSTRACT

CONTEXT: In people with spinal cord injury (SCI), infections are a leading cause of death, and there is a high prevalence of diabetes mellitus, obesity, and hypertension, which are all comorbidities associated with worse outcomes after COVID-19 infection. OBJECTIVE: To characterize self-reported health impacts of COVID-19 on people with SCI related to exposure to virus, diagnosis, symptoms, complications of infection, and vaccination. METHODS: The Spinal Cord Injury COVID-19 Pandemic Experience Survey (SCI-CPES) study was administered to ask people with SCI about their health and other experiences during the COVID-19 pandemic. RESULTS: 223 community-living people with SCI (male = 71%; age = 52±15 years [mean±SD]; paraplegia = 55%) completed the SCI-CPES. Comorbidities first identified in the general population as associated with poor outcomes after COVID-19 infection were commonly reported in this SCI sample: hypertension (30%) and diabetes (13%). 23.5% of respondents reported a known infection exposure from someone who visited (13.5%) or lived in their home (10%). During the study, which included a timeframe when testing was either unavailable or scarce, 61% of respondents were tested for COVID-19; 14% tested or were presumed positive. Fever, fatigue, and chills were the most common symptoms reported. Of the 152 respondents surveyed after COVID-19 vaccines became available, 82% reported being vaccinated. Race and age were significantly associated with positive vaccination status: most (78%) individuals who were vaccinated identified as Non-Hispanic White and were older than those who reported being unvaccinated (57±14 vs. 43±13 years, mean±SD). CONCLUSIONS: Self-reported COVID-19 symptoms were relatively uncommon and not severe in this sample of people with SCI. Potential confounders and limitations include responder, recruitment and self-reporting biases and changing pandemic conditions. Future studies on this topic should query social distancing and other behavioral strategies. Large retrospective chart review studies may provide additional data on incidence and prevalence of COVID-19 infections, symptoms, and severities in the SCI population.

6.
J Spinal Cord Med ; : 1-9, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37534908

ABSTRACT

CONTEXT: Early during the COVID-19 pandemic, rehabilitation providers received reports from people with spinal cord injury (SCI) of considerable disruptions in caregiver services, medical and nursing care, and access to equipment and supplies; concomitantly, the medical community raised concerns related to the elevated risk of acquiring the infection due to SCI-specific medical conditions. Due to the novel nature of the pandemic, few tools existed to systematically investigate the outcomes and needs of people with SCI during this emergency. OBJECTIVE: To develop a multidimensional assessment tool for surveying the experience of the COVID-19 pandemic on physical and psychological health, employment, caregiving services, medical supplies and equipment, and the delivery of medical care for people with SCI. METHODS: The Spinal Cord Injury COVID-19 Pandemic Experience Survey (SCI-CPES) study, conducted between July 2020 through August 2021, surveyed people with SCI about their experiences during the early COVID-19 pandemic. The SCI-CPES was developed by a SCI care and research consortium using an iterative process. RESULTS: Two hundred and twenty-three people completed the survey. Most respondents resided in the consortium catchment area. As the survey progressed, online informed consent became available allowing dissemination of the SCI-CPES nationally. CONCLUSIONS: The consortium rapidly implemented the capture of experiences with COVID-19 pandemic directly from people with SCI, including survey creation, institutional approvals, distribution, online e-consenting, and data collection. In the future, the SCI-CPES is adaptable for use in other types of emergencies and disasters.

7.
J Clin Densitom ; 25(3): 308-318, 2022.
Article in English | MEDLINE | ID: mdl-35216904

ABSTRACT

Persons with traumatic spinal cord injury (SCI) have severe bone loss below the level of lesion with the distal femur (DF) and proximal tibia (PT) being the skeletal regions having the highest risk of fracture. While a reference areal bone mineral density (aBMD) database is available at the total hip (TH) using the combined National Health and Nutrition Examination Survey (NHANES) III study and General Electric (GE) combined (GE/NHANES) to calculate T-score (T-scoreGE/NHANES), no such reference database exists for aBMD of the DF, and PT. The primary objectives of this study were (1) to create a reference dataset of young-healthy able-bodied (YHAB) persons to calculate T-score (T-scoreYHAB) values at the DF and PT, (2) to explore the impact of time since injury (TSI) on relative bone loss in the DF and PT regions using the two computation models to determine T-score values, and (3) to determine agreement between T-score values for a cohort of persons with SCI using the (T-scoreYHAB) and (T-scoreGE/NHANES) reference datasets. A cross-sectional prospective data collection study. A Department of Veterans Affairs Medical Center and a Private Rehabilitation Hospital. A normative reference aBMD database at the DF and PT was collected in 32 male and 32 female Caucasian YHAB participants (n=64) and then applied to calculate T-score values at the DF and PT in 105 SCI participants from a historical cohort. The SCI participants were then grouped based on TSI epochs (E-I: TSI < 1y, E-II: TSI 1-5y, E-III: TSI 6-10y, E-IV: TSI 11-20y, E-V: TSI > 20y). N/A. The knee and hip aBMD values were obtained by dual energy X-ray absorptiometry (GE Lunar iDXA) using standard clinical software for proximal femur orthopedic knee software applications. There were no significant differences in mean aBMD values across the four YHAB age subgroups (21-25, 26-30, 31-35, and 36-40 yr of age) at the TH, DF, and PT; mean aBMD values were higher in men compared to the women at all skeletal regions of interest. Using the mean YHAB aBMD values to calculate T-score values at each TSI epoch for persons with SCI, T-score values decreased as a function of TSI, and they continued to decline for 11-20 yr. Moderate kappa agreement was noted between the YHAB and the GE/NHANES reference datasets for the T-score cutoff criteria accepted to diagnose osteoporosis (i.e., SD <-2.5). A homogeneous reference dataset of YHAB aBMD values at the DF and PT was applied to calculate T-score values in persons with chronic SCI. There was a moderate level of agreement at the TH between the YHAB and GE/NHANES reference datasets when applying the conventional T-score cutoff value for the diagnosis of osteoporosis.


Subject(s)
Osteoporosis , Spinal Cord Injuries , Absorptiometry, Photon , Bone Density , Cross-Sectional Studies , Female , Femur/pathology , Humans , Male , Nutrition Surveys , Spinal Cord Injuries/diagnostic imaging , Tibia/diagnostic imaging
8.
Spinal Cord ; 60(2): 149-156, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34819608

ABSTRACT

STUDY DESIGN: Cross-sectional validation study. OBJECTIVES: The performance of previously published physical activity (PA) intensity cutoff thresholds based on proprietary ActiGraph counts for manual wheelchair users (MWUs) with spinal cord injury (SCI) was initially evaluated using an out-of-sample dataset of 60 individuals with SCI. Two types of PA intensity classification models based on raw accelerometer signals were developed and evaluated. SETTING: Research institutions in Pittsburgh PA, Birmingham AL, and Bronx NY. METHODS: Data were collected from 60 MWUs with SCI who followed a structured activity protocol while wearing an ActiGraph activity monitor on their dominant wrist and portable metabolic cart which measured criterion PA intensity. Data was used to assess published models as well as develop and assess custom models using recall, specificity, precision, as well as normalized Mathew's correlation coefficient (nMCC). RESULTS: All the models performed well for predicting sedentary vs non-sedentary activity, yielding an nMCC of 0.87-0.90. However, all models demonstrated inadequate performance for predicting moderate to vigorous PA (MVPA) with an nMCC of 0.76-0.82. CONCLUSIONS: The mean absolute deviation (MAD) cutoff threshold yielded the best performance for predicting sedentary vs non-sedentary PA and may be used for tracking daily sedentary activity. None of the models displayed strong performance for MVPA vs non-MVPA. Future studies should investigate combining physiological measures with accelerometry to yield better prediction accuracies for MVPA.


Subject(s)
Spinal Cord Injuries , Wheelchairs , Accelerometry/methods , Cross-Sectional Studies , Exercise/physiology , Humans , Spinal Cord Injuries/diagnosis
9.
J Clin Densitom ; 24(3): 442-452, 2021.
Article in English | MEDLINE | ID: mdl-34001430

ABSTRACT

Persons with spinal cord injury (SCI) have increased adiposity that may predispose to cardiovascular disease compared to those who are able-bodied (AB). The purpose of this study was to determine the relationships between dual energy X-ray absorptiometry (DXA)-derived visceral adipose tissue (VAT) and biomarkers of lipid metabolism and insulin resistance in persons with chronic SCI. A prospective observational study in participants with chronic SCI and age- and gender-matched AB controls. The study was conducted at a Department of Veterans Affairs Medical Center and Private Rehabilitation Hospital. The quantification of DXA-derived VAT volume (VATvol) and blood-derived markers of lipid and carbohydrate metabolism were determined in 100 SCI and 51 AB men. The VATvol was acquired from a total body DXA scan and analyzed using iDXA enCore CoreScan software (GE Lunar). Blood samples were collected for the serum lipid profile and plasma and glucose concentrations, with the latter two values used to calculate a measure of insulin resistance. In the SCI and AB groups, VAT% was significantly correlated with most cardiometabolic biomarkers. The results of the binary logistic regression analysis revealed that participants who had a VATvol above the cutoff value of 1630 cm3 were 3.1-, 4.8-, 5.6-, 19.2-, and 16.7-times more likely to have high serum triglycerides (R2N= 0.09, p = 0.014), low serum high density lipoprotein cholesterol (R2N = 0.16, p < 0.001), HOMA2-IR (R2N = 0.18, p < 0.001), metabolic syndrome (R2N = 0.25, p < 0.001), and a 10-yr Framingham Risk Score ≥ 10% (R2N = 0.16, p = 0.001), respectively, when compared to participants below this VATvol cutoff value. Our findings reveal that persons with chronic SCI have a higher VATvol than that of AB controls, and VATvol correlates directly with biomarkers of lipid and carbohydrate metabolism that are strong predictors of cardiometabolic disorders.


Subject(s)
Cardiovascular Diseases , Obesity, Abdominal , Spinal Cord Injuries , Absorptiometry, Photon , Adiposity , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Humans , Intra-Abdominal Fat/diagnostic imaging , Male , Obesity, Abdominal/metabolism , Spinal Cord Injuries/complications , Spinal Cord Injuries/diagnostic imaging
10.
J Clin Med ; 10(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800503

ABSTRACT

Persons with spinal cord injury (SCI) have neurogenic bowel disorders characterized by difficulty with evacuation (DWE), fecal incontinence, and discoordination of defecation. Six medically stable in-patients with SCI with a mean age of 57 ± 10 years (range: 39-66 years) and time since injury of 18 ± 17 years (range: 3-47 years) were investigated. Standard of care (SOC) for bowel care was followed by two weeks of SOC plus neostigmine (0.07 mg/kg) and glycopyrrolate (0.014 mg/kg) administered transcutaneously by iontophoresis thrice weekly for two weeks while patients continued to receive SOC. The primary endpoint was time to bowel evacuation. Body weights and abdominal radiographs were obtained. Ten questions related to bowel function and the Treatment Satisfaction Questionnaire for Medication were acquired after each arm. Bowel evacuation time decreased after the dual drug intervention arm (106.9 ± 68.4 vs. 40.8 ± 19.6 min; p < 0.0001). Body weight decreased (2.78 ± 0.98 kg; p < 0.0001), a finding confirmed on abdominal radiograph. Both questionnaires demonstrated improvement after the dual drug intervention arm. No major adverse events occurred. The addition of neostigmine and glycopyrrolate by transcutaneous administration to SOC for bowel care in persons with SCI and DWE resulted in the safe, effective, and predictable bowel evacuation with subjective improvement in bowel care.

11.
J Clin Med ; 10(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801165

ABSTRACT

Bowel function after spinal cord injury (SCI) is compromised because of a lack of voluntary control and reduction in bowel motility, often leading to incontinence and constipation not easily managed. Physical activity and upright posture may play a role in dealing with these issues. We performed a three-center, randomized, controlled, crossover clinical trial of exoskeletal-assisted walking (EAW) compared to usual activity (UA) in people with chronic SCI. As a secondary outcome measure, the effect of this intervention on bowel function was assessed using a 10-question bowel function survey, the Bristol Stool Form Scale (BSS) and the Spinal Cord Injury Quality of Life (SCI-QOL) Bowel Management Difficulties instrument. Fifty participants completed the study, with bowel data available for 49. The amount of time needed for the bowel program on average was reduced in 24% of the participants after EAW. A trend toward normalization of stool form was noted. There were no significant effects on patient-reported outcomes for bowel function for the SCI-QOL components, although the time since injury may have played a role. Subset analysis suggested that EAW produces a greater positive effect in men than women and may be more effective in motor-complete individuals with respect to stool consistency. EAW, along with other physical interventions previously investigated, may be able to play a previously underappreciated role in assisting with SCI-related bowel dysfunction.

12.
Spinal Cord Ser Cases ; 7(1): 20, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712561

ABSTRACT

STUDY DESIGN: Pre-post intervention. OBJECTIVE: To explore the potential effect of exoskeletal-assisted walking (EAW) on seated balance for persons with chronic motor complete spinal cord injury (SCI). SETTING: A SCI research center. METHODS: Eight participants who were over 18 years of age with chronic SCI and used a wheelchair for mobility were enrolled. Seven able-bodied participants were used for normal seated balance comparative values. Participants with chronic SCI received supervised EAW training using a powered exoskeleton (ReWalkTM) for a median 30 sessions (range from 7 to 90 sessions). Before and after EAW training, seated balance testing outcomes were collected using computerized dynamic posturography, providing measurements of endpoint excursion (EPE), maximal excursion (MXE), and directional control (DCL). Modified functional reach test (MFRT) and the sub-scales of physical functioning and role limitations due to physical health from the Short Form (36) Health Survey (SF-36) were used to identify changes in functional activities. RESULTS: After EAW training, seated balance significantly improved in total-direction EPE and MXE (P < 0.01 and P < 0.017 respectively). The results of MFRT and sub-scales of physical functioning and role limitations due to physical health improved after EAW training but were not statistically significant. CONCLUSIONS: EAW training may have the potential to improve seated balance for persons with chronic motor complete SCI. Due to the limitations of the study, such as small sample size and lack of a control group, further studies are needed to clarify the effect of improving seated balance through EAW training.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Adolescent , Adult , Humans , Pilot Projects , Postural Balance , Walking
13.
Arch Phys Med Rehabil ; 102(2): 196-202, 2021 02.
Article in English | MEDLINE | ID: mdl-33171129

ABSTRACT

OBJECTIVE: To determine the effect of overground walking using a powered exoskeleton on soft tissue body composition in persons with spinal cord injury (SCI). DESIGN: A prospective, single group observational pilot study. SETTING: Medical center. PARTICIPANTS: Persons (N=8) with chronic (>6mo) SCI between 18 and 65 years old who weighed less than 100 kg. INTERVENTIONS: Overground ambulation training using a powered exoskeleton (ReWalk) for 40 sessions, with each session lasting up to 2 hours, with participants training 3 times per week. MAIN OUTCOME MEASURE(S): Dual-energy x-ray absorptiometry (DXA) was used to measure lean mass (LM) and fat mass (FM) from the whole body, arms, legs and trunk. DXA was also used to assess visceral adipose tissue (VAT). Walking performance was measured by 6-minute walk test. RESULTS: Participants significantly lost total body FM (-1.8±1.2kg, P=.004) with the loss of adiposity distributed over several regional sites. Six of the 8 participants lost VAT, with the average loss in VAT trending toward significance (-0.141kg, P=.06). LM for the group was not significantly changed. CONCLUSIONS: Sustained and weekly use of powered exoskeletons in persons with SCI has the potential to reduce FM with inferred improvements in health.


Subject(s)
Body Composition , Exoskeleton Device , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Walking/physiology , Absorptiometry, Photon , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Pilot Projects , Prospective Studies , Walk Test
14.
Arch Phys Med Rehabil ; 102(2): 185-195, 2021 02.
Article in English | MEDLINE | ID: mdl-33181116

ABSTRACT

OBJECTIVE: To determine the cardiometabolic demands associated with exoskeletal-assisted walking (EAW) in persons with paraplegia. This study will further examine if training in the device for 60 sessions modifies cost of transport (CT). DESIGN: Prospective cohort study. Measurements over the course of a 60-session training program, approximately 20 sessions apart. SETTING: James J. Peters Bronx Veterans Affairs Medical Center, Center for the Medical Consequences of Spinal Cord Injury Research Center. PARTICIPANTS: The participants' demographics (N=5) were 37-61 years old, body mass index (calculated as weight in kilograms divided by height in meters squared) of 22.7-28.6, level of injury from T1-T11, and 2-14 years since injury. INTERVENTIONS: Powered EAW. MAIN OUTCOME MEASURES: Oxygen consumption per unit time (V˙O2, mL/min/kg), velocity (m/min), cost of transport (V˙O2/velocity), and rating of perceived exertion (RPE). RESULTS: With training: EAW velocity significantly improved (Pre: 51±51m; 0.14±0.14m/s vs Post: 99±42m; 0.28±0.12m/s, P=.023), RPE significantly decreased (Pre: 13±6 vs Post: 7±4, P=.001), V˙O2 significantly improved (Pre: 9.76±1.23 mL/kg/m vs Post: 12.73±2.30 mL/kg/m, P=.04), and CT was reduced from the early to the later stages of training (3.66±5.2 vs 0.87±0.85 mL/kg/m). CONCLUSIONS: The current study suggests that EAW training improves oxygen uptake efficiency and walking velocities, with a lower perception of exertion.


Subject(s)
Exoskeleton Device , Oxygen Consumption/physiology , Paraplegia/physiopathology , Paraplegia/therapy , Walking/physiology , Adult , Female , Humans , Male , Middle Aged , Prospective Studies
15.
JBMR Plus ; 4(8): e10375, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33134767

ABSTRACT

Persons with neurologically motor-complete spinal cord injury (SCI) have a marked loss of bone mineral density (BMD) of the long bones of the lower extremities, predisposing them to fragility fractures, especially at the knee. Denosumab, a commercially available human monoclonal IgG antibody to receptor activator of nuclear factor-κB ligand (RANKL), may provide an immunopharmacological solution to the rapid progressive deterioration of sublesional bone after SCI. Twenty-six SCI participants with subacute motor-complete SCI were randomized to receive either denosumab (60 mg) or placebo at baseline (BL), 6, and 12 months. Areal bone mineral density (aBMD) by dual energy x-ray absorptiometry (DXA) at 18 months at the distal femur was the primary outcome and aBMD of the proximal tibia and hip were the secondary outcomes analyzed in 18 of the 26 participants (denosumab, n = 10 and placebo, n = 8). The metrics of peripheral QCT (pQCT) were the exploratory outcomes analyzed in a subsample of the cohort (denosumab, n = 7 and placebo n = 7). The mean aBMD (±95% CI) for the denosumab versus the placebo groups demonstrated a significant group × time interactions for the following regions of interest at BL and 18 months: distal femoral metaphysis = mean aBMD 1.187; 95% CI, 1.074 to 1.300 and mean aBMD 1.202; 95% CI, 1.074 to 1.329 versus mean aBMD 1.162; 95% CI, 0.962 to 1.362 and mean aBMD 0.961; 95% CI, 0.763 to 1.159, respectively (p < 0.001); distal femoral epiphysis = mean aBMD 1.557; 95% CI, 1.437 to 1.675 and mean aBMD 1.570; 95% CI, 1.440 to 1.700 versus mean aBMD 1.565; 95% CI, 1.434 to 1.696 and mean aBMD 1.103; 95% CI, 0.898 to 1.309, respectively (p = 0.002); and proximal tibial epiphysis = mean aBMD 1.071; 95% CI, 0.957 to 1.186 and mean aBMD 1.050; 95% CI, 0.932 to 1.168 versus mean aBMD 0.994; 95% CI, 0.879 to 1.109 and mean aBMD 0.760; 95% CI, 0.601 to 0.919, respectively (p < 0.001). Analysis of pQCT imaging revealed a continued trend toward significantly greater loss in total volumetric BMD (vBMD) and trabecular vBMD at the 4% distal tibia region, with a significant percent loss for total bone mineral content. Thus, at 18 months after acute SCI, our findings show that denosumab maintained aBMD at the knee region, the site of greatest clinical relevance in the SCI population. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

16.
Contemp Clin Trials ; 96: 106102, 2020 09.
Article in English | MEDLINE | ID: mdl-32800962

ABSTRACT

There are more than 300,000 estimated cases of spinal cord injury (SCI) in the United States, and approximately 27,000 of these are Veterans. Immobilization from SCI results in adverse secondary medical conditions and reduced quality of life. Veterans with SCI who have completed rehabilitation after injury and are unable to ambulate receive a wheelchair as standard of care. Powered exoskeletons are a technology that offers an alternative form of limited mobility by enabling over-ground walking through an external framework for support and computer-controlled motorized hip and knee joints. Few studies have reported the safety and efficacy for use of these devices in the home and community environments, and none evaluated their impact on patient-centered outcomes through a randomized clinical trial (RCT). Absence of reported RCTs for powered exoskeletons may be due to a range of challenges, including designing, statistically powering, and conducting such a trial within an appropriate experimental framework. An RCT for the study of exoskeletal-assisted walking in the home and community environments also requires the need to address key factors such as: avoiding selection bias, participant recruitment and retention, training, and safety concerns, particularly in the home environment. These points are described here in the context of a national, multisite Department of Veterans Affairs Cooperative Studies Program-sponsored trial. The rationale and methods for the study design were focused on providing a template for future studies that use powered exoskeletons or other strategies for walking and mobility in people with immobilization due to SCI.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries , Humans , Knee Joint , Quality of Life , Walking
17.
Arch Phys Med Rehabil ; 101(9): 1563-1569, 2020 09.
Article in English | MEDLINE | ID: mdl-32502566

ABSTRACT

OBJECTIVES: To derive accelerometer count thresholds for classifying time spent in sedentary, light intensity, and moderate-to-vigorous physical activity (MVPA) in manual wheelchair users (MWUs) with spinal cord injury (SCI). DESIGN: Participants completed 18 activities of daily living and exercises for 10 minutes each with a 3-minute break between activities while wearing a COSMED K4b2 portable metabolic cart and an ActiGraph activity monitor on the dominant wrist. A linear regression was computed between the wrist acceleration vector magnitude and SCI metabolic equivalent of task (MET) for 80% of the participants to obtain thresholds for classifying different activity intensities, and the obtained thresholds were tested for accuracy on the remaining 20% of participants. This cross-validation process was iterated for 1000 times to evaluate the stability of the thresholds on data corresponding to different proportions of sedentary, light intensity, and MVPA. MET values of 1.5 or lower were classified as sedentary behavior, MET values between 1.5 and 3 were classified as light intensity, and MET values of 3 or higher were classified as MVPA. The final thresholds were then validated on an out-of-sample independent dataset. PARTICIPANTS: MWUs (N=17) with SCI in the out-of-sample validation data set. INTERVENTIONS: Not applicable. SETTING: Research lab, community MAIN OUTCOME MEASURES: Accelerometer thresholds to classify sedentary, light intensity, and MVPA were obtained and their accuracy tested using cross-validation and an out-of-sample dataset. RESULTS: The threshold between sedentary and light intensity was 2057 counts-per-minute, and the threshold between light intensity and MVPA was 11,551 counts per minute. Based on the out-of-sample validation, the obtained thresholds had an overall accuracy of 85.6%, with a sensitivity and specificity of 95.3% and 97.4% for sedentary behavior, 87.8% and 84.5% for light intensity, 68.5% and 96.3% for MVPA, respectively. CONCLUSION: Accelerometer-based thresholds can be used to accurately identify sedentary behavior. However, thresholds may not provide accurate estimations of MVPA throughout the day when participants engage in more resistance-based activities.


Subject(s)
Actigraphy/instrumentation , Exercise/physiology , Spinal Cord Injuries/rehabilitation , Activities of Daily Living , Adult , Female , Humans , Male , Middle Aged , Sedentary Behavior , Sensitivity and Specificity , Wheelchairs , Wrist
18.
J Spinal Cord Med ; 43(2): 141-164, 2020 03.
Article in English | MEDLINE | ID: mdl-32105586

ABSTRACT

Objective: To provide an overview of clinical assessments and diagnostic tools, self-report measures (SRMs) and data sets used in neurogenic bladder and bowel (NBB) dysfunction and recommendations for their use with persons with spinal cord injury /disease (SCI/D).Methods: Experts in SCI/D conducted literature reviews, compiled a list of NBB related assessments and measures, reviewed their psychometric properties, discussed their use in SCI/D and issued recommendations for the National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (NINDS) Common Data Elements (CDEs) guidelines.Results: Clinical assessments included 15 objective tests and diagnostic tools for neurogenic bladder and 12 for neurogenic bowel. Following a two-phase evaluation, eight SRMs were selected for final review with the Qualiveen and Short-Form (SF) Qualiveen and the Neurogenic Bowel Dysfunction Score (NBDS) being recommended as supplemental, highly-recommended due to their strong psychometrics and extensive use in SCI/D. Two datasets and other SRM measures were recommended as supplemental.Conclusion: There is no one single measure that can be used to assess NBB dysfunction across all clinical research studies. Clinical and diagnostic tools are here recommended based on specific medical needs of the person with SCI/D. Following the CDE for SCI studies guidelines, we recommend both the SF-Qualiveen for bladder and the NBDS for bowel as relatively short measures with strong psychometrics. Other measures are also recommended. A combination of assessment tools (objective and subjective) to be used jointly across the spectrum of care seems critical to best capture changes related to NBB and develop better treatments.


Subject(s)
Guidelines as Topic , Neurogenic Bowel/diagnosis , Spinal Cord Injuries/complications , Urinary Bladder, Neurogenic/diagnosis , Humans , Psychometrics , Self Report , Surveys and Questionnaires
19.
Arch Phys Med Rehabil ; 101(4): 607-612, 2020 04.
Article in English | MEDLINE | ID: mdl-31891715

ABSTRACT

OBJECTIVE: To explore the potential effects of incorporating exoskeletal-assisted walking (EAW) into spinal cord injury (SCI) acute inpatient rehabilitation (AIR) on facilitating functional and motor recovery when compared with standard of care AIR. DESIGN: A quasi-experimental design with a prospective intervention group (AIR with EAW) and a retrospective control group (AIR only). SETTING: SCI AIR facility. PARTICIPANTS: Ten acute inpatient participants with SCI who were eligible for locomotor training were recruited in the intervention group. Twenty inpatients with SCI were identified as matched controls by reviewing an AIR database, Uniform Data System for Medical Rehabilitation, by an individual blinded to the study. Both groups (N=30) were matched based on etiology, paraplegia/tetraplegia, completeness of injury, age, and sex. INTERVENTION: EAW incorporated into SCI AIR. MAIN OUTCOME MEASURES: FIM score, International Standards for Neurological Classification of Spinal Cord Injury Upper Extremity Motor Score and Lower Extremity Motor Scores (LEMS), and EAW session results, including adverse events, walking time, and steps. RESULTS: Changes from admission to discharge LEMS and FIM scores were significantly greater in the intervention group (LEMS change: 14.3±10.1; FIM change: 37.8±10.8) compared with the control group (LEMS change: 4.6±6.1; FIM change: 26.5±14.3; Mann-Whitney U tests: LEMS, P<.01 and FIM, P<.05). One adverse event (minor skin abrasion) occurred during 42 walking sessions. Participants on average achieved 31.5 minutes of up time and 18.2 minutes of walk time with 456 steps in one EAW session. CONCLUSIONS: Incorporation of EAW into standard of care AIR is possible. AIR with incorporated EAW has the potential to facilitate functional and motor recovery compared with AIR without EAW.


Subject(s)
Exoskeleton Device , Spinal Cord Injuries/rehabilitation , Walking/physiology , Case-Control Studies , Disability Evaluation , Female , Hospitalization , Humans , Male , Middle Aged , Paraplegia/physiopathology , Paraplegia/rehabilitation , Pilot Projects , Quadriplegia/physiopathology , Quadriplegia/rehabilitation , Spinal Cord Injuries/physiopathology
20.
Front Robot AI ; 7: 93, 2020.
Article in English | MEDLINE | ID: mdl-33501260

ABSTRACT

Background: Clinical exoskeletal-assisted walking (EAW) programs for individuals with spinal cord injury (SCI) have been established, but many unknown variables remain. These include addressing staffing needs, determining the number of sessions needed to achieve a successful walking velocity milestone for ambulation, distinguishing potential achievement goals according to level of injury, and deciding the number of sessions participants need to perform in order to meet the Food and Drug Administration (FDA) criteria for personal use prescription in the home and community. The primary aim of this study was to determine the number of sessions necessary to achieve adequate EAW skills and velocity milestones, and the percentage of participants able to achieve these skills by 12 sessions and to determine the skill progression over the course of 36 sessions. Methods: A randomized clinical trial (RCT) was conducted across three sites, in persons with chronic (≥6 months) non-ambulatory SCI. Eligible participants were randomized (within site) to either the EAW arm first (Group 1), three times per week for 36 sessions, striving to be completed in 12 weeks or the usual activity arm (UA) first (Group 2), followed by a crossover to the other arm for both groups. The 10-meter walk test seconds (s) (10MWT), 6-min walk test meters (m) (6MWT), and the Timed-Up-and-Go (s) (TUG) were performed at 12, 24, and 36 sessions. To test walking performance in the exoskeletal devices, nominal velocities and distance milestones were chosen prior to study initiation, and were used for the 10MWT (≤ 40s), 6MWT (≥80m), and TUG (≤ 90s). All walking tests were performed with the exoskeletons. Results: A total of 50 participants completed 36 sessions of EAW training. At 12 sessions, 31 (62%), 35 (70%), and 36 (72%) participants achieved the 10MWT, 6MWT, and TUG milestones, respectively. By 36 sessions, 40 (80%), 41 (82%), and 42 (84%) achieved the 10MWT, 6MWT, and TUG criteria, respectively. Conclusions: It is feasible to train chronic non-ambulatory individuals with SCI in performance of EAW sufficiently to achieve reasonable mobility skill outcome milestones.

SELECTION OF CITATIONS
SEARCH DETAIL
...